Answer:
The expected return on Bo's complete portfolio will be "10.32%".
Step-by-step explanation:
The given question is incomplete. Please find attachment of the complete question.
According to the question, the given values are:
Port's expected return,
![R_p=12 \ percent](https://img.qammunity.org/2021/formulas/business/college/jqpw9vh0gqdzhduetbht6y5uvri0le7xij.png)
T-bill's expected return,
![R_t=3.6 \ percent](https://img.qammunity.org/2021/formulas/business/college/v9mm12b334ethfzr46r2ov6p68zkujc2u1.png)
Port's weight,
![W_p=80 \ percent \ i.e.,\ 0.80](https://img.qammunity.org/2021/formulas/business/college/mknvcnf7ujrg2mkl19j367bfk1fqq0hw82.png)
T-bill's weight,
![W_t=20 \ percent \ i.e., \ 0.20](https://img.qammunity.org/2021/formulas/business/college/6tpf76fwxatqw0glxvvpj88gde9ab2xcr8.png)
Now,
The Bo's complete portfolio's expected return will be:
⇒
![W_p* R_p+W_t* R_t](https://img.qammunity.org/2021/formulas/business/college/s101sj8i32ps75j1ogmow38a0fm2zl3lfo.png)
On substituting the given values, we get
⇒
![0.80* 12 \ percent+0.20* 3.6 \ percent](https://img.qammunity.org/2021/formulas/business/college/qppitgbndcwngea0j4maatz4c53u6uoa18.png)
⇒
![10.32 \ percent](https://img.qammunity.org/2021/formulas/business/college/w0w8ytymvw9aplgqh320hv5xj2k2zckjeo.png)
Note: percent = %