Answer:
![z =(33.3- 34)/((5)/(√(54)))= -1.028](https://img.qammunity.org/2021/formulas/mathematics/college/ow89t3x4vsvhdl37y3kb4yyt9c5cg7lrif.png)
![z =(34.3- 34)/((5)/(√(54)))= 0.441](https://img.qammunity.org/2021/formulas/mathematics/college/sqya8lzgwarcedper14ptwfmoqrrfwe6z0.png)
An we can use the normal standard table and the following difference and we got this result:
![P(-1.028<z<0.441)= P(z<0.441) -P(z<-1.028) = 0.670 -0.152 =0.518](https://img.qammunity.org/2021/formulas/mathematics/college/ou83awxoqikpzb57860iskfwtsyt0lgfef.png)
Explanation:
Assuming this statement to complete the problem "with a standard deviation 5 mpg"
We have the following info given:
represent the mean
represent the deviation
We have a sample size of n = 54 and we want to find this probability:
![P(33.3 < \bar X< 34.3)](https://img.qammunity.org/2021/formulas/mathematics/college/j5uf0jj9g9kmlc2mqh6c9kh869yme17b9l.png)
And for this case since the sample size is large enough >30 we can apply the central limit theorem and then we can use this distribution:
![\bar X \sim N(\mu , (\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/sailtwjamlyrxe5pna7bmzm9a2rvkr5244.png)
And we can use the z score formula given by:
![z=(\bar X -\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/izfxtbxchq093nspp44r0kflq9cmvxqrgo.png)
And replacing we got:
![z =(33.3- 34)/((5)/(√(54)))= -1.028](https://img.qammunity.org/2021/formulas/mathematics/college/ow89t3x4vsvhdl37y3kb4yyt9c5cg7lrif.png)
![z =(34.3- 34)/((5)/(√(54)))= 0.441](https://img.qammunity.org/2021/formulas/mathematics/college/sqya8lzgwarcedper14ptwfmoqrrfwe6z0.png)
An we can use the normal standard table and the following difference and we got this result:
![P(-1.028<z<0.441)= P(z<0.441) -P(z<-1.028) = 0.670 -0.152 =0.518](https://img.qammunity.org/2021/formulas/mathematics/college/ou83awxoqikpzb57860iskfwtsyt0lgfef.png)