Answer:
Explanation:
The product of distances to the circle along a secant is the same for all secants intersecting a given point.
a. Secants SW and QT intersect at U. Thus ...
(UT)(UQ) = (US)(UW)
(1.5)(4) = (SU)(3)
SU = (4)(1.5)/3
SU = 2
__
b. Secants PT and PX intersect at P. Thus ...
(PQ)(PT) = (PR)(PX)
PX = (PQ)(PT)/PR) = (2.5)(2.5 +4 +1.5)/3 = 20/3
PX = 6 2/3