Answer:
The tower is 73.4 m tall
Explanation:
The height of the pole = 2.5 m
The shadow cast by the pole = 1.72 m
Shadow cast by tower = 50.5 m
To find the height of the tower, we proceed by finding the angle of elevation, θ, of the light source casting the shadows as follows;


The same tanθ gives;

Which gives;
