Answer:
11 litres of water will fit inside the container.
Explanation:
As per the given figure, we have a container formed with combination of a right angled cone placed at the top of a right cylinder.
Given:
Height of cylinder,
= 15 cm
Diameter of cylinder/ cone, D = 26 cm
Slant height of cone, l = 20 cm
Here, we need to find the volume of container.
![\\Volume_(Container) = Volume_(Cylinder)+Volume_(Cone)\\\Rightarrow Volume_(Container) = \pi r_1^2 h_1+(1)/(3)\pi r_2^2 h_2](https://img.qammunity.org/2021/formulas/mathematics/high-school/e90ulehaif26mzmv81alht967xlvsj5ss6.png)
Here,
![r_1=r_2 = (Diameter)/(2) = (26)/(2) =13\ cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/916b2mwj3rz3567ra01grs3qny2hc286e4.png)
To find the Height of Cylinder, we can use the following formula:
![l^2 = r_2^2+h_2^2\\\Rightarrow h_2^2 = 20^2-13^2\\\Rightarrow h_2^2 = 400-169\\\Rightarrow h_2^2 = 231\\\Rightarrow h_2=15.2\ cm \approx 15\ cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/k91mkne3z4puzyelx53qbj8sowfubf1tye.png)
Now, putting the values to find the volume of container:
![Volume_(Container) = \pi * 13^2 * 15+(1)/(3)\pi * 13^2 * 15\\\Rightarrow Volume_(Container) = \pi * 13^2 * 15+\pi * 13^2 * 5\\\Rightarrow Volume_(Container) = \pi * 13^2 * 20\\\Rightarrow Volume_(Container) = 10613.2 \approx 10613\ cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/xzpnro5orw8jmh4880wpfuw94077aqisz4.png)
Converting
to litres:
![10613 cm^3 = 10.613\ litres \approx 11\ litres](https://img.qammunity.org/2021/formulas/mathematics/high-school/y30uyoba7slexcvumllgpzcd5nmf7sbjmq.png)
11 litres of water will fit inside the container.