Answer:

Step-by-step explanation:
Given that
Radius , r= 3.03 m
Mass of disk , M= 145 kg
Initial angular velocity
ω=0.681 rev/s
Mass of person , m= 65.4 kg
Velocity of person , V= 3.41 m/s
Initial mass moment of inertia


Final mass moment of inertia



By using angular momentum equation




Thus the angular velocity will be 0.891 rev/s