Answer: The width is 1.25692 μm
Step-by-step explanation:
The data that we have here is:
Distance between the single slit to the screen = L = 43cm
λ = 636 nm
Distance from the central maximum to the first minimum = Z = 3.8mm
We know that the angle for the destructive diffraction is:
θ = pλ/a
where p is the order of the minimum, for the first minimum we have p = 1, and a is the width of the slit,
then we have:
θ = (636nm/a)
And we also know that we can construct a triangle rectangle, where the adjacent cathetus to this angle is the distance between the slit and the screen, and the opposite cathetus is the distance between the first maximum and the first minimum:
Tg(θ) = Z/L
Tan(636nm/a) = 3.8cm/43cm
First, we need to use the same units in the right side:
3.8mm = 0.38cm
Tg(636nm/a) = 0.38cm/43cm
636nm/a = Atg( 0.38cm/43cm ) = 0.506
a = 636nm/0.506 = 1,256.92 nm
1 μm = 1000nm
then:
a = 1,256.92 nm = (1,256.92/1000) μm = 1.25692 μm