Answer:
B.
![(6)/(2x^(2) - 5x)](https://img.qammunity.org/2021/formulas/mathematics/college/kjspfg3xj41fm65i9wfhycjnrelpnlz5bd.png)
Explanation:
The product of the ratioal expressions given above can be found as follows:
![= (2)/(x) * (3)/(2x - 5)](https://img.qammunity.org/2021/formulas/mathematics/college/rwckc4eja6wtcfmd2v3xoojud8sh6l87c1.png)
Multiply the denominators together, and the numerators together, separately to get a single expression
![(2(3))/(x(2x - 5))](https://img.qammunity.org/2021/formulas/mathematics/college/h6b6lw9l52k0ppesxr4xnibs8tr2gk89s1.png)
![= (6)/(x(2x) - x(5))](https://img.qammunity.org/2021/formulas/mathematics/college/omokoc7tnvsys6vxchj3mi3ren2lroi6eq.png)
![= (6)/(2x^(2) - 5x)](https://img.qammunity.org/2021/formulas/mathematics/college/gyig1yccwq5prv04w7fuh8gskwwbitr0yh.png)
The product of the expression
=
![(6)/(2x^(2) - 5x)](https://img.qammunity.org/2021/formulas/mathematics/college/kjspfg3xj41fm65i9wfhycjnrelpnlz5bd.png)
The answer is B.