1.7k views
0 votes
If possible, find AB, BA, and A2.

If possible, find AB, BA, and A2.-example-1

1 Answer

6 votes

First product:


AB=\begin{bmatrix}3&-3\\-7&0\\2&4\end{bmatrix}\begin{bmatrix}1&0\\0&1\end{bmatrix}=\begin{bmatrix}\begin{bmatrix}3&-3\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}&\begin{bmatrix}3&-3\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix}\\\begin{bmatrix}-7&0\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}&\begin{bmatrix}-7&0\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix}\\\begin{bmatrix}2&4\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}&\begin{bmatrix}2&4\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix}\end{bmatrix}=\begin{bmatrix}3&-3\\-7&0\\2&4\end{bmatrix}

Notice how multiplying A by B produces A again, because B is an identity matrix.

The second product cannot be carried out because A has more columns that B has rows.

The third product also cannot be computed because A is not a square matrix.

User FiddlingAway
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories