Answer:
My conclusion about Quadrilaterals ABCD and EFCD is that both quadrilaterals are similar to each other.
THE REASON IS BECAUSE THE SIDES OF QUADRILATERAL ABCD ARE THE SAME AS THE SIDES OF QUADRILATERAL EFCD.
Explanation:
When we are given vertices, (x1, y1) , (x2 ,y2), we use the formula:
√(x2 - x1)² + (y2 - y1)²
For quadrilateral ABCD are A(4, 8), B(10, 10), C(10, 4), and D(4, 4)
Side AB: A(4, 8), B(10, 10)
√(x2 - x1)² + (y2 - y1)²
√(10 - 4)² + (10 - 8)²
= √6² + 2²
= √40
Side BC: B(10, 10), C(10, 4)
√(x2 - x1)² + (y2 - y1)²
= √(10 - 10)² + ( 4 - 10)²
= √ 0² + (-6)²
= √36
= 6
Side CD: C(10, 4), D(4, 4)
√(x2 - x1)² + (y2 - y1)²
= √ (4 - 10)² + ( 4 - 4)²
= √-6² + 0²
= √36
= 6
Side AD: A(4, 8), D(4, 4)
=√(x2 - x1)² + (y2 - y1)²
= √(4 - 4)² + (4 - 8)²
= √0² + (-4²)
= √16
= 4
Therefore, for Quadrilateral ABCD
Side AB = √40
Side BC = 6
Side CD = 6
Side AD = 4
For quadrilateral EFCD are E(4, 0), F(10, -2), C(10, 4), and D(4, 4).
Side EF: E(4, 0), F(10, -2)
√(x2 - x1)² + (y2 - y1)²
= √(10 - 4)² + (-2 - 0)²
= √6² + 2²
= √40
Side FC: F(10, -2), C(10, 4)
√(x2 - x1)² + (y2 - y1)²
= √(10 - 10)² + (4 -(-2))²
= √ 0² + 6²
= √36
= 6
Side CD: C(10, 4), D(4, 4)
√(x2 - x1)² + (y2 - y1)²
= √(10 - 4)² + (4 - 4)²
= √6² + 0²
= √36
= 6
Side ED: E(4, 0), D(4, 4)
√(x2 - x1)² + (y2 - y1)²
= √(4 - 4)² + (4 - 0)²
= √0² + 4²
= √16
= 4
Therefore, for Quadrilateral EFCD
Side EF = √40
Side FC = 6
Side CD = 6
Side ED = 4
My conclusion about Quadrilaterals ABCD and EFCD is that both quadrilaterals are similar to each other.
THE REASON IS BECAUSE THE SIDES OF QUADRILATERAL ABCD ARE THE SAME AS THE SIDES OF QUADRILATERAL EFCD.