Answer:
the probability that the mean student loan debt for these people is between $31000 and $33000 is 0.1331
Explanation:
Given that:
Mean = 30000
Standard deviation = 9000
sample size = 100
The probability that the mean student loan debt for these people is between $31000 and $33000 can be computed as:
![P(31000 < X < 33000) = P( X \leq 33000) - P (X \leq 31000)](https://img.qammunity.org/2021/formulas/mathematics/college/9x9c7y54sh5t038uwz9suulg14r8skf7mf.png)
![P(31000 < X < 33000) = P( (X - 30000)/((\sigma)/(√(n))) \leq (33000 - 30000)/((9000)/(√(100))) )- P( (X - 30000)/((\sigma)/(√(n))) \leq (31000 - 30000)/((9000)/(√(100))) )](https://img.qammunity.org/2021/formulas/mathematics/college/2tqasm88r4m137ob9qnkmwfjobs00judtb.png)
![P(31000 < X < 33000) = P( Z \leq (33000 - 30000)/((9000)/(√(100))) )- P(Z \leq (31000 - 30000)/((9000)/(√(100))) )](https://img.qammunity.org/2021/formulas/mathematics/college/xj54jo3hka8dwabiyyd0i6cvyk3wyql8eh.png)
![P(31000 < X < 33000) = P( Z \leq (3000)/((9000)/(10))}) -P(Z \leq (1000)/((9000)/(10))})](https://img.qammunity.org/2021/formulas/mathematics/college/dg4ntwz3z44pvut270y9kvcn1clmk32ukl.png)
![P(31000 < X < 33000) = P( Z \leq 3.33)-P(Z \leq 1.11})](https://img.qammunity.org/2021/formulas/mathematics/college/ehdrm120ikbjnq7clqosw6n03fuh0ae559.png)
From Z tables:
![P(31000 < X <33000) = 0.9996 -0.8665](https://img.qammunity.org/2021/formulas/mathematics/college/i75989241h9z0uddiqh5pbaol4tgfizqnq.png)
![P(31000 < X <33000) = 0.1331](https://img.qammunity.org/2021/formulas/mathematics/college/zaok6pemsm3wdifet59lv71otww5zhmop6.png)
Therefore; the probability that the mean student loan debt for these people is between $31000 and $33000 is 0.1331