Answer:
![(x^2-16)/(2) + 16ln(4)/(x) +16C](https://img.qammunity.org/2021/formulas/mathematics/college/4jdpat257ui2whux6vjciavt57tw553yoa.png)
Explanation:
Given the indefinite integral
, using the substitute
x = 4 sec(θ)...1
The integral can be calculated as thus;
First let us diffrentiate the substitute function with respect to θ
dx/dθ = 4secθtanθ
dx = 4secθtanθdθ... 2
Substituting equation 1 and 2 into the integral function we will have;
![\int\limits{((4sec \theta)^2-16)/(4sec \theta) } \, 4sec \theta tan \theta d \theta\\\int\limits{(16sec^2 \theta-16)/(4sec \theta) } \, 4sec \theta tan \theta d \theta\\\int\limits{((16(sec^2 \theta-1))/(4sec \theta) } \, 4sec \theta tan \theta d \theta\\\\from \ trig \ identity,\ sec^2 \theta - 1 = tan^\theta\\\\\int\limits{(16 tan^2 \theta)/(4sec \theta) } \, 4sec \theta tan \theta d \theta\\\\\int\limits 16 tan^3 \theta d \theta\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/3dnehz905aqxhbtd9fmbj1vtyrmzry7cfk.png)
Find the remaining solution in the attachment.