Answer:
a) See step by step explanation
b) See annex
c) t(s) = 3,4255
d) p- value = 0,00146 or 0,15 %
e) See step by step explanation
Explanation:
As n < 30 we use a t-student distribution
Population mean μ₀ = 10,5
Sample size n = 23
Degree of freedom n - 1 = 22
Sample mean μ = 11,5
Sample standard deviation s = 1,4
Confidence Interval 95 %
a) Null Hypothesis H₀ μ = μ₀
Alternative Hypothesis Hₐ μ > μ₀
As CI = 95 % α = 5% or α = 0,05
We are solving a one tail-test
With df = 22 and α = 0,05 in t-table we find t(c) = 1,7171
c) t(s) = ( μ - μ₀ ) / s / √n
t(s) = ( 11,5 - 10,5 ) / 1,4 / √23
t(s) = 1 * 4,7958 / 1,4
t(s) = 3,4255
We compare t(s) and t(c)
t(s) > t(c) and t(s) is in the rejection region
Then we reject the null hypothesis.
d) P-value for t(s) = 3,4255 is from t-table equal to:
We find for df = 22 α = 0,001 and α = 0,005
values of t
t 3,505 2, 819 Δt = 0,686
α 0,001 0,005 Δα = 0,004
with these values we interpolate by rule of three
0,686 ⇒ 0,004
(3,505 - 3,4255) ⇒ x
x = 0,000463
and P-value = 0,00146 or 0,15 %
e) The p-value indicates we are far away to consider the accptance of H₀