Answer:
498 m
Explanation:
The AAA theorem states that triangles are similar if all three corresponding angles are equal.
1. Compare triangles FHS and ILS
(a) Reason for similarity
∠F = ∠I = 90°
∠S is common.
∴ ∠H = ∠L
(b) Calculate SL
![\begin{array}{rcl}(SF)/(SH) & = & (SI)/(SL)\\\\(225)/(380) & = & (225 + 475)/(SL)\\\\225SL & = & 380 * 700\\& = & 266000\\SL & = & \textbf{1182 m}\\\end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xs57l3y50lek7rmq4r1haak11l56727o79.png)
2. Compare triangles ILS and GLE
(a) Reason for similarity
∠I = ∠G = 90°
∠L is common.
∴ ∠S = ∠E
(b) Calculate LE
![\begin{array}{rcl}(IS)/(GE) & = & (LS)/(LE)\\\\(700)/(180) & = & (1182)/(LE)\\\\700LE & = & 180 * 1182\\& = & 212800\\LE & = & \textbf{304.0 m}\\\end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/64s3aratgcx175ygv4fmdli1qig4w8rkl1.png)
3. Calculate EH
LE + EH + HS = LS
304.0 m + EH + 380 m = 1182 m
EH + 684 m = 1182 m
EH = 498 m
The distance from E to H is 498 m.