Answer:
The 95% confidence interval for the mean score, , of all students taking the test is
![28.37< L\ 30.63](https://img.qammunity.org/2021/formulas/mathematics/college/6hafakkzmvhy2evwujwjs8xgt5jh2tkv5j.png)
Explanation:
From the question we are told that
The sample size is
![n = 59](https://img.qammunity.org/2021/formulas/mathematics/college/dh7ontrodjpxmynfufih4lnxuh4kdx4dhh.png)
The mean score is
![\= x = 29.5](https://img.qammunity.org/2021/formulas/mathematics/college/xc0cynd5z0obkxai19mcuzo0cjwc690p9o.png)
The standard deviation
![\sigma = 5.2](https://img.qammunity.org/2021/formulas/mathematics/college/7bnsvfsyxf066beue57tdkxaxz2kge5q1e.png)
Generally the standard deviation of mean is mathematically represented as
![\sigma _(\= x) = (\sigma )/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/dtsqwwj3zgdg6i5ajsurtqj254q2zh23v5.png)
substituting values
![\sigma _(\= x) = (5.2 )/(√(59) )](https://img.qammunity.org/2021/formulas/mathematics/college/gx4kycobwm5h9xxuipy913dmt5nvclztuf.png)
![\sigma _(\= x) = 0.677](https://img.qammunity.org/2021/formulas/mathematics/college/wsxqwgrmkxz2jr0x5ozwf0g6btr5ppd0vx.png)
The degree of freedom is mathematically represented as
![df = n - 1](https://img.qammunity.org/2021/formulas/mathematics/college/p5g1yaeoz7t50ffzhr13wun6vtyl84olc9.png)
substituting values
![df = 59 -1](https://img.qammunity.org/2021/formulas/mathematics/college/iidjwnyjqfcx7y41s6eugl0rjt4yme5o8v.png)
![df = 58](https://img.qammunity.org/2021/formulas/mathematics/college/6f01h2d54l5rrnjkaza2u0c8qptmoc5gdz.png)
Given that the confidence interval is 95% then the level of significance is mathematically represented as
![\alpha = 100 -95](https://img.qammunity.org/2021/formulas/mathematics/college/qf54f2itn0sh0cf10d4qgfhnymyh68dn15.png)
5%
![\alpha = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/445n2djo6b5zbv5df68kz5tjhh2puf9bol.png)
Now the critical value at this significance level and degree of freedom is
![t_(df , \alpha ) = t_(58, 0.05 ) = 1.672](https://img.qammunity.org/2021/formulas/mathematics/college/3kunap3covfjnnp0zyjs1r5mdugyha04pl.png)
Obtained from the critical value table
So the the 95% confidence interval for the mean score, , of all students taking the test is mathematically represented as
![\= x - t*(\sigma_(\= x)) < L\ \= x + t*(\sigma_(\= x))](https://img.qammunity.org/2021/formulas/mathematics/college/p9h2ls7idblvkavo3yoslcn1cgs8gex0tq.png)
substituting value
![(29.5 - 1.672* 0.677) < L\ (29.5 + 1.672* 0.677)](https://img.qammunity.org/2021/formulas/mathematics/college/gmi5lqrkrg9hzz8alciqx2rh1p9bttvijk.png)
![28.37< L\ 30.63](https://img.qammunity.org/2021/formulas/mathematics/college/6hafakkzmvhy2evwujwjs8xgt5jh2tkv5j.png)