22.5k views
0 votes
Imagine two free electrons that collide elastically in an acidic solution where one electron was moving and the other electron was stationary. When the electrons separate the moving electron now has a velocity of 400 m/s and the stationary electron now has a velocity of 200 m/s. What was the initial kinetic energy of the moving electron

User Habib
by
4.3k points

1 Answer

5 votes

Answer: 9.1 × 10^-26 Joule

Step-by-step explanation:

Since the collision is elastic. The kinetic energy will be conserved. That is, the sum of kinetic energy before collision will be the same as the sum of the

energy after collision.

Mass of an electron = 9.1 × 10^-31 kg

Given that the velocity of the moving electron = 400 m/s and the stationary electron now has a velocity = 200 m/s.

K.E = 1/2mv^2

Add the two kinetic energies

1/2mV1^2 + 1/2mV2^2

1/2m( V1^2 + V2^2 )

Since they both have common mass

Substitute m and the two velocities

1/2 × 9.1×10^-31( 400^2 + 200^2)

4.55×10^-31 ( 160000 + 40000 )

4.55×10^-31 × 200000

K.E = 9.1 × 10^-26 Joule

Therefore, the initial kinetic energy of the moving electron is 9.1×10^-26 J

User Eric Leung
by
4.7k points