Split up the interval [0, 8] into 4 equally spaced subintervals:
[0, 2], [2, 4], [4, 6], [6, 8]
Take the right endpoints, which form the arithmetic sequence
![r_i=2+\frac{8-0}4(i-1)=2i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sz2ppwvlur4vu9txgacgs55co49i466umu.png)
where 1 ≤ i ≤ 4.
Find the values of the function at these endpoints:
![f(r_i)=-4{r_i}^2+32r_i=-16i^2+64i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4x5iage4opd2ge5u1jtl8bacegs3zpht8a.png)
The area is given approximately by the Riemann sum,
![\displaystyle\int_0^8f(x)\,\mathrm dx\approx\sum_(i=1)^4f(r_i)\Delta x_i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/51v0ifdgipbcl1nqawok2dxzf4hbbw5220.png)
where
; so the area is approximately
![\displaystyle2\sum_(i=1)^4(-16i^2+64i)=-32\sum_(i=1)^4i^2+128\sum_(i=1)^4i=-32\cdot\frac{4\cdot5\cdot9}6+128\cdot\frac{4\cdot5}2=\boxed{320}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hz8prjirdvdeqdgocfaa8flshrq80hnnl7.png)
where we use the formulas,
![\displaystyle\sum_(i=1)^ni=\frac{n(n+1)}2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vkghgzckby383xpa4q08zgjyajuazmqao4.png)
![\displaystyle\sum_(i=1)^ni^2=\frac{n(n+1)(2n+1)}6](https://img.qammunity.org/2021/formulas/mathematics/college/wcr4mkllffhvdt2n3qc95aghbl5i3cz1bc.png)