83.1k views
1 vote
PLZ HELP!!! Use limits to evaluate the integral.

PLZ HELP!!! Use limits to evaluate the integral.-example-1
User Velsachin
by
6.0k points

1 Answer

0 votes

Split up the interval [0, 2] into n equally spaced subintervals:


\left[0,\frac2n\right],\left[\frac2n,\frac4n\right],\left[\frac4n,\frac6n\right],\ldots,\left[\frac{2(n-1)}n,2\right]

Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,


r_i=\frac{2i}n

where
1\le i\le n. Each interval has length
\Delta x_i=\frac{2-0}n=\frac2n.

At these sampling points, the function takes on values of


f(r_i)=7{r_i}^3=7\left(\frac{2i}n\right)^3=(56i^3)/(n^3)

We approximate the integral with the Riemann sum:


\displaystyle\sum_(i=1)^nf(r_i)\Delta x_i=\frac{112}n\sum_(i=1)^ni^3

Recall that


\displaystyle\sum_(i=1)^ni^3=\frac{n^2(n+1)^2}4

so that the sum reduces to


\displaystyle\sum_(i=1)^nf(r_i)\Delta x_i=(28n^2(n+1)^2)/(n^4)

Take the limit as n approaches infinity, and the Riemann sum converges to the value of the integral:


\displaystyle\int_0^27x^3\,\mathrm dx=\lim_(n\to\infty)(28n^2(n+1)^2)/(n^4)=\boxed{28}

Just to check:


\displaystyle\int_0^27x^3\,\mathrm dx=\frac{7x^4}4\bigg|_0^2=\frac{7\cdot2^4}4=28

User Gre
by
4.8k points