Split up the interval [0, 2] into n equally spaced subintervals:
![\left[0,\frac2n\right],\left[\frac2n,\frac4n\right],\left[\frac4n,\frac6n\right],\ldots,\left[\frac{2(n-1)}n,2\right]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oy3zvxd7mcs7r5l00sx5m2saib35xmeygo.png)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,
![r_i=\frac{2i}n](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d8kkwvre84y4jdq7h89oubg2yvwz82aq9f.png)
where
. Each interval has length
.
At these sampling points, the function takes on values of
![f(r_i)=7{r_i}^3=7\left(\frac{2i}n\right)^3=(56i^3)/(n^3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ga327una7q611i36kecq7no78j3ddvm94c.png)
We approximate the integral with the Riemann sum:
![\displaystyle\sum_(i=1)^nf(r_i)\Delta x_i=\frac{112}n\sum_(i=1)^ni^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ya44dwqdf1z5c07qodepaspjxtc8hdj86g.png)
Recall that
![\displaystyle\sum_(i=1)^ni^3=\frac{n^2(n+1)^2}4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pspa34skw43c9t9siro2c72pr41n9g4aqo.png)
so that the sum reduces to
![\displaystyle\sum_(i=1)^nf(r_i)\Delta x_i=(28n^2(n+1)^2)/(n^4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9ogjkffbc67chllmry81ehf7db6grt67te.png)
Take the limit as n approaches infinity, and the Riemann sum converges to the value of the integral:
![\displaystyle\int_0^27x^3\,\mathrm dx=\lim_(n\to\infty)(28n^2(n+1)^2)/(n^4)=\boxed{28}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7tx64qww5yap4rold4za40e4vkica0crrc.png)
Just to check:
![\displaystyle\int_0^27x^3\,\mathrm dx=\frac{7x^4}4\bigg|_0^2=\frac{7\cdot2^4}4=28](https://img.qammunity.org/2021/formulas/mathematics/middle-school/42ah9cm43ap0r14tp290qamw7etm23m195.png)