102k views
2 votes
Suppose you titrate 25.00 mL of 0.200 M KOBr with 0.200M H2SO4. The pH at half-equivalence point is 7.75 a). What is the initial pH of the 25.00mL of 0.200M KOBr mentioned above

1 Answer

3 votes

Answer:

Approximately
10.88.

Step-by-step explanation:

Equilibrium constant


\rm OBr^(-) can act as a weak Bronsted-Lowry base:


\rm OBr^(-)\; (aq) + H_2O\; (l) \rightleftharpoons HOBr\; (l) + OH^(-)\; (aq).

(Side note: the state symbol of
\rm HOBr in this equation is
\rm (l) (meaning liquid) because
\rm HOBr is a weak acid.)

However, the equilibrium constant of this reaction,
K_\text{eq}, isn't directly given. The idea is to find
K_\text{eq} using the
\rm pH value at the half-equivalence point. Keep in mind that this system is at equilibrium all the time during the titration. If temperature stays the same, then the same
K_\text{eq} value could also be used to find the
\rm pH of the solution before the acid was added.

At equilibrium:


\displaystyle K_\text{eq} = ([\rm HOBr\; (l)]\cdot [\rm OH^(-)\; (aq)])/([\rm OBr^(-)\; (aq)]).

At the half-equivalence point of this titration, exactly half of the base,
\rm OBr^(-), has been converted to its conjugate acid,
\rm HOBr. Therefore, the half-equivalence concentration of
\rm OBr^(-) and
\rm HOBr should both be equal to one-half the initial concentration of
\rm OBr^(-).

As a result, the half-equivalence concentration of
\rm OBr^(-) and
\rm HOBr should be the same. The expression for
K_\text{eq} can thus be simplified:


\begin{aligned}& K_\text{eq} \\&= \frac{\left(\text{half-equivalence $[\rm HOBr\; (l)]$}\right)\cdot \left(\text{half-equivalence $[\rm OH^(-)\; (aq)]$}\right)}{\text{half-equivalence $[\rm OBr^(-)\; (l)]$}}\\ &=\text{half-equivalence $[\rm OH^(-)\; (aq)]$}\end{aligned}.

In other words, the
K_\text{eq} of this system is equal to the
\rm OH^(-) concentration at the half-equivalence point. Assume that
\rm p\mathnormal{K}_\text{w} the self-ionization constant of water, is
14. The concentration of
\rm OH^(-) can be found from the
\rm pH value:


\begin{aligned}& \text{half-equivalence $[\rm OH^(-)\; (aq)]$} \\ &= 10^{\rm pH - p\mathnormal{K}_\text{w}}\;\rm mol \cdot L^(-1) \\ &= 10^(7.75 - 14)\; \rm mol \cdot L^(-1)\\ &= 10^(-6.25)\; \rm mol \cdot L^(-1)\end{aligned}.

Therefore,
\begin{aligned} K_\text{eq} &= 10^(-6.25)\end{aligned}.

Initial pH of the solution

Again, since
\rm KOBr is a soluble salt, all that
0.200\; \rm M of
\rm KOBr in this solution will be in the form of
\rm K^(+) and
\rm OBr^(-) ions. Before any hydrolysis takes place, the concentration of
\rm OBr^(-) should be equal to that of
\rm KOBr. Therefore:


\text{$[\rm OBr^(-)\; (aq)]$ before hydrolysis} = 0.200\; \rm M.

Let the equilibrium concentration of
[\rm OH^(-)\; (aq)] be
x\; \rm M. Create a RICE table for this reversible reaction:


\begin{array}ccccccc & \rm OBr^(-)\; (aq) &+&\rm H_2O\; (l)& \rightleftharpoons & \rm HOBr\; (l)& + & \rm OH^(-)\; (aq) \\ \textbf{I}& 0.200\; \rm M & & & & 0 \; \rm M & & 0\; \rm M \\ \textbf{C} & -x\; \rm M & & & & +x \; \rm M & & +x\; \rm M \\ \textbf{E}& (0.200 + x)\; \rm M & & & & x \; \rm M & & x\; \rm M \end{array}.

Assume that external factors (such as temperature) stays the same. The
K_\text{eq} found at the half-equivalence point should apply here, as well.


\displaystyle K_\text{eq} = ([\rm HOBr\; (l)]\cdot [\rm OH^(-)\; (aq)])/([\rm OBr^(-)\; (aq)]).

At equilibrium:


\displaystyle ([\rm HOBr\; (l)]\cdot [\rm OH^(-)\; (aq)])/([\rm OBr^(-)\; (aq)]) = (x^2)/(0.200 + x).

Assume that
x is much smaller than
0.200, such that the denominator is approximately the same as
0.200:


\displaystyle ([\rm HOBr\; (l)]\cdot [\rm OH^(-)\; (aq)])/([\rm OBr^(-)\; (aq)]) = (x^2)/(0.200 + x) \approx (x^2)/(0.200).

That should be equal to the equilibrium constant,
K_\text{eq}. In other words:


\displaystyle (x^2)/(0.200) \approx K_\text{eq} = 10^(-6.25).

Solve for
x:


x \approx 3.35* 10^(-4).

In other words, the
\rm OH^(-) before acid was added was approximately
3.35* 10^(-4)\; \rm M, which is the same as
3.35* 10^(-4)\; \rm mol \cdot L^(-1). Again, assume that
\rm p\mathnormal{K}_\text{w} = 14. Calculate the
\rm pH of that solution:


\begin{aligned}\rm pH &= \rm p\mathnormal{K}_\text{w} + \log [\mathrm{OH^(-)}] \approx 10.88\end{aligned}.

(Rounded to two decimal places.)

User Assaf Moldavsky
by
3.5k points