134k views
1 vote
What are the solutions of 2x2- 6x+5=0?

User Tejinder
by
4.3k points

1 Answer

2 votes

Answer:


$x_(1)=(3)/(2)+(i)/(2)\\$


$x_(2)=(3)/(2)-(i)/(2)$

Explanation:

It is a Quadratic Equation


2x^2-6x+5=0

Once it cannot be easily factored, you solve it using the quadratic formula or completing the square. I will use the quadratic formula.


$x=(-b\pm √(b^2-4ac))/(2a)$


$x=(-(-6)\pm√((-6)^2-4\cdot 2\cdot 5))/(2\cdot 2)$

The discriminant is negative, therefore we got complex solutions.


\Delta= √(-4)= √(4i) =2i


$x=(6\pm 2i)/(4)$


$x_(1)=(3+i)/(2) $


$x_(2)=(3-i)/(2) $

Now, just rewrite the roots in standard complex form


$x_(1)=(3)/(2)+(i)/(2)\\$


$x_(2)=(3)/(2)-(i)/(2)$

User Alexandre LEROY
by
5.8k points