126k views
1 vote
A company rounds its losses to the nearest dollar. The error on each loss is independently and uniformly distributed on [–0.5, 0.5]. If the company rounds 2000 such claims, find the 95th percentile for the sum of the rounding errors.

1 Answer

1 vote

Answer:

the 95th percentile for the sum of the rounding errors is 21.236

Explanation:

Let consider X to be the rounding errors

Then;
X \sim U (a,b)

where;

a = -0.5 and b = 0.5

Also;

Since The error on each loss is independently and uniformly distributed

Then;


\sum X _1 \sim N ( n \mu , n \sigma^2)

where;

n = 2000

Mean
\mu = (a+b)/(2)


\mu = (-0.5+0.5)/(2)


\mu =0


\sigma^2 = ((b-a)^2)/(12)


\sigma^2 = ((0.5-(-0.5))^2)/(12)


\sigma^2 = ((0.5+0.5)^2)/(12)


\sigma^2 = ((1.0)^2)/(12)


\sigma^2 = (1)/(12)

Recall:


\sum X _1 \sim N ( n \mu , n \sigma^2)


n\mu = 2000 * 0 = 0


n \sigma^2 = 2000 * (1)/(12) = (2000)/(12)

For 95th percentile or below


P(\overline X < 95}) = P(\frac{\overline X - \mu }{\sqrt{{n \sigma^2}}}< \frac{P_(95)- 0 } {\sqrt{(2000)/(12)}}) =0.95


P(Z< \frac{P_(95) } {\sqrt{(2000)/(12)}}) = 0.95


P(Z< \frac{P_(95)√(12) } {\sqrt{{2000}}}) = 0.95


\frac{P_(95)√(12) } {\sqrt{{2000}}} =1- 0.95


\frac{P_(95)√(12) } {\sqrt{{2000}}} = 0.05

From Normal table; Z > 1.645 = 0.05


\frac{P_(95)√(12) } {\sqrt{{2000}}} =1.645


{P_(95)√(12) } = 1.645 * {\sqrt{{2000}}}


{P_(95) = \frac{1.645 * {\sqrt{{2000}}} }{√(12) } }


\mathbf{P_(95) = 21.236}

the 95th percentile for the sum of the rounding errors is 21.236

User SUNDARRAJAN K
by
4.4k points