Answer:
Z = 0.87
Step-by-step explanation:
Given the following data;
Sample 1:
n1 = 30
Mean, X = 2.36
Standard deviation, Ox = 0.96
Sample 2:
n2 = 60
Mean, Y = 2.19
Standard deviation, Oy = 0.66
The formula for test statistics for two population is;
![Z = \frac{X-Y}{\sqrt{(\frac{Ox^2} {n_1} } +(Oy^2)/(n_2) )}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/w2b2rsd2uxf1omay4ykpqgdobva3rqlr8n.png)
Substituting the values, we have;
![Z = \frac{2.36-2.19}{\sqrt{(\frac{0.96^2} {30} +(0.66^2)/(60) )}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/kt26b80k8msj5fpjde263xfr973dm1yqtr.png)
![Z = \frac{0.17}{\sqrt{(\frac{0.9216} {30} +(0.4356)/(60) )}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/fc09inhjmhce8v3l5sux5wj59shemo3a8k.png)
![Z = (0.17)/(√((0.03072 +0.00726)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/gel3y3berx1qvzycxq3dpfxfncy55xo3m1.png)
![Z = (0.17)/(√(0.03798))](https://img.qammunity.org/2021/formulas/mathematics/high-school/afibmp3gp7kintydnyf9fbks23di58ta4c.png)
![Z = (0.17)/(0.19488)](https://img.qammunity.org/2021/formulas/mathematics/high-school/42sgxu0mma8cxr2egeg1i55vsztdhfc4vq.png)
Z = 0.8723
The test statistics to 2 d.p is 0.87
Therefore, Z = 0.87