106k views
0 votes
An astronomy research team has been studying the atmosphere of a moon orbiting a newly discovered exoplanet. The team has determined that the moon has an average temperature of 95K on the surface, with an average pressure of 1.6atm. Remote analysis of this moon's atmosphere has revealed it has a molar mass of 28.6 g/mol. Calculate the density (g/L) of 1 mole of the moon's atmosphere under the given conditions.

User Shelman
by
4.5k points

1 Answer

1 vote

Answer:

5.81 g/L

Step-by-step explanation:

Let's apply the Ideal Gases Law to determine this:

P . V = n . R . T

Pressure = 1.6 atm

Volume = ?

Mol = 1 mol

Temperature = 96 K

In order to find the density, we should know the volume of the atmosphere which is a mixture of gases so, we consider all the atmosphere as a unique ideal gas.

1. 6 atm . V = 1 mol . 0.082 L.atm/mol.K . 96K

V = (1 mol . 0.082 L.atm/mol.K . 96K) / 1.6 atm

V = 4.92 L → As this is the volume for the whole atmosphere and the mass of 1 mol is 28.6 g, density should be:

28.6 g / 4.92L = 5.81 g/L

Density → mass / volume

User StephanieQ
by
4.9k points