Answer:
(a) 25 degrees
(b) -11 degrees
(c) 38 degrees
Explanation:
The temperature function is:
![T(t) = -t^2+4t+34](https://img.qammunity.org/2021/formulas/mathematics/college/5o1snxkw6hhby5zb8b32bf9tioui0r9vdp.png)
(a) The average value for a temperature is:
![M=(1)/(b-a)* \int\limits^b_a {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/2xgujvrehy4sdcb6otweg6iyv68pqu0bv0.png)
In this particular case, the average temperature is:
![M=(1)/(9-0)* \int\limits^9_0 {T(t)} \, dt \\M=(1)/(9)* \int\limits^9_0 {(-t^2+4t+34)} \, dt \\M=(1)/(9)* {(-(t^3)/(3)+2t^2+34t)}|_0^9\\M=(1)/(9)*( {(-(9^3)/(3)+2*(9^2)+34*9)-0)](https://img.qammunity.org/2021/formulas/mathematics/college/ddpzqcq7kjvolt3wyaqyfldoxirekl6dyk.png)
![M=25](https://img.qammunity.org/2021/formulas/mathematics/college/3q0eqtib2k1cybiti3cap7tl5vww8aac7s.png)
The average temperature is 25 degrees.
(b) The expression is a parabola that is concave down, therefore there are no local minimums, which means that the minimum temperature will be at one of the extremities of the interval:
![T(0) = -0^2+4*0+34=34\\T(9) = -9^2+9*4+34=-11](https://img.qammunity.org/2021/formulas/mathematics/college/sb8q5ffx0stn9lsmmdescokdnl3k4jv77k.png)
The minimum temperature is -11 degrees.
(c) The maximum temperature will occur at the point for which the derivate of the temperature function is zero:
![T(t) = -t^2+4t+34\\T'(t)=-2t+4=0\\2t=4\\t=2](https://img.qammunity.org/2021/formulas/mathematics/college/zumlikyfrxc5xx1s9m3zsr3bg0msk5h59z.png)
At t = 2, the temperature is:
![T(2) = -2^2+4*2+34=38](https://img.qammunity.org/2021/formulas/mathematics/college/expyhomrmtsoj86un1fq7ru2pr369q04vx.png)
The maximum temperature is 38 degrees.