2.3k views
0 votes
Which of the following represents a rotation of triangle XYZ, which has vertices (-4,7), Y(6,2), and Z (3,-8) about the origin by 90 degrees? HELP PLS options: A: X (-7,-4) Y(6,-2) Z(-8,3) B: X(7,-4) Y(-2,6) Z (3,-8) C: X (-7,-4) Y(-2,6) Z (8,3) D: X(7,-4) Y (-2,6) Z (-3,8)

User James Gan
by
8.6k points

1 Answer

4 votes

Answer:

The best option is B: X' = (-7,-4), Y' = (-2,6), Z'=(8, 3).

Explanation:

Each vertex can be represented as a vector with regard to origin.


\vec X = -4\cdot i + 7\cdot j,
\vec Y = 6\cdot i + 2\cdot j and
\vec Z = 3\cdot i -8\cdot j.

The magnitudes and directions of each vector are, respectively:

X:


\|\vec X\| = \sqrt{(-4)^(2)+7^(2)}


\|\vec X\| \approx 8.063


\theta_(X) = \tan^(-1)\left((7)/(-4) \right)


\theta_(X) \approx 119.744^(\circ)

Y:


\|\vec Y\| = \sqrt{6^(2)+2^(2)}


\|\vec Y\| \approx 6.325


\theta_(Y) = \tan^(-1)\left((2)/(6) \right)


\theta_(Y) \approx 18.435^(\circ)

Z:


\|\vec Z\| = \sqrt{3^(2)+(-8)^(2)}


\|\vec Z\| \approx 8.544


\theta_(Z) = \tan^(-1)\left((-8)/(3) \right)


\theta_(Z) \approx 290.556^(\circ)

Now, the rotation consist is changing the direction of each vector in
\pm 90^(\circ), which means the existence of two solutions. That is:


\vec p = r \cdot [\cos (\theta \pm 90^(\circ))\cdot i + \sin (\theta \pm 90^(\circ))\cdot j]

Where
r and
\theta are the magnitude and the original angle of the vector.

Solution I (
+90^(\circ))


\vec p_(X) = 8.063\cdot [\cos (119.744^(\circ)+90^(\circ))\cdot i + \sin (119.744^(\circ)+90^(\circ))\cdot j]


\vec p_(X) = -7\cdot i -4\cdot j


\vec p_(Y) = 6.325\cdot [\cos(18.435^(\circ)+90^(\circ))\cdot i+\sin(18.435^(\circ)+90^(\circ))\cdot j]


\vec p_(Y) = -2\cdot i +6\cdot j


\vec p_(Z) = 8.544\cdot [\cos(290^(\circ)+90^(\circ))\cdot i +\sin(290^(\circ)+90^(\circ))\cdot j]


\vec p_(Z) = 8.029\cdot i +2.922\cdot j

Solution II (
-90^(\circ))


\vec p_(X) = 8.063\cdot [\cos (119.744^(\circ)-90^(\circ))\cdot i + \sin (119.744^(\circ)-90^(\circ))\cdot j]


\vec p_(X) = 7\cdot i +4\cdot j


\vec p_(Y) = 6.325\cdot [\cos(18.435^(\circ)-90^(\circ))\cdot i+\sin(18.435^(\circ)-90^(\circ))\cdot j]


\vec p_(Y) = 2\cdot i -6\cdot j


\vec p_(Z) = 8.544\cdot [\cos(290^(\circ)-90^(\circ))\cdot i +\sin(290^(\circ)-90^(\circ))\cdot j]


\vec p_(Z) = -8.029\cdot i -2.922\cdot j

The rotated vertices are: i) X' = (-7,-4), Y' = (-2,6), Z'=(8.029, 2.922) or ii) X' = (7,4), Y' = (2,-6), Z' = (-8.029, -2.922). The best option is B: X' = (-7,-4), Y' = (-2,6), Z'=(8, 3).

User RKS
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories