43.2k views
4 votes
A firm has the​ marginal-demand function Upper D prime (x )equalsStartFraction negative 1200 x Over StartRoot 25 minus x squared EndRoot EndFraction . Find the demand function given that Dequals16 comma 000 when x equals $ 4 per unit.

User Vera
by
4.8k points

1 Answer

6 votes

Answer:

The demand function is
\mathbf{D(x) = 1200(√(25-x^2))+ 124000}

Explanation:

A firm has the​ marginal-demand function
D' x = (-1200)/(√(25-x^2 ) ).

Find the demand function given that D = 16,000 when x = $4 per unit.

What we are required to do is to find the demand function D(x);

If we integrate D'(x) with respect to x ; we have :


\int\limits \ D'(x) \, dx = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx


D(x) = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx

Let represent t with
√(25-x^2)}

The differential of t with respect to x is :


(dt)/(dx)= (1)/(2 √(25-x^2))}(-2x)


(dt)/(dx)= (-x)/( √(25-x^2))}


{dt}= (-xdx)/( √(25-x^2))}

replacing the value of
(-xdx)/( √(25-x^2))} for dt in
D(x) = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx

So; we can say :


D(x) = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx


D(x) = 1200\int\limits{(- x)/(√(25-x^2)) } \, dx


D(x) = 1200\int\limits \ dt


D(x) = 1200t+ C

Let's Recall that :

t =
√(25-x^2)}

Now;


\mathbf{D(x) = 1200(√(25-x^2)})+ C}

GIven that:

D = 16,000 when x = $4 per unit.

i.e

D(4) = 16000

SO;


D(x) = 1200(√(25-x^2)})+ C


D(4) = 1200(√(25-4^2)})+ C


D(4) = 1200(√(25-16)})+ C


D(4) = 1200(√(9)})+ C


D(4) = 1200(3}})+ C

16000 = 1200 (3) + C

16000 = 3600 + C

16000 - 3600 = C

C = 12400

replacing the value of C = 12400 into
\mathbf{D(x) = 1200(√(25-x^2)})+ C}, we have:


\mathbf{D(x) = 1200(√(25-x^2))+ 124000}

∴ The demand function is
\mathbf{D(x) = 1200(√(25-x^2))+ 124000}

User ProblemsOfSumit
by
5.7k points