Answer:
The demand function is
![\mathbf{D(x) = 1200(√(25-x^2))+ 124000}](https://img.qammunity.org/2021/formulas/mathematics/college/y3x6sk8xb0vd8tejc6yvjtzeimggpl9y21.png)
Explanation:
A firm has the marginal-demand function
.
Find the demand function given that D = 16,000 when x = $4 per unit.
What we are required to do is to find the demand function D(x);
If we integrate D'(x) with respect to x ; we have :
![\int\limits \ D'(x) \, dx = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ji9iaoiq8j35owt4cqy1vzsmffgaocu6ht.png)
![D(x) = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/oputakjgackzq2l9c1nz7vt7puw19t8etx.png)
Let represent t with
![√(25-x^2)}](https://img.qammunity.org/2021/formulas/mathematics/college/t5p184j6l1lg4nlmcq51co3yvsf5e9gpmz.png)
The differential of t with respect to x is :
![(dt)/(dx)= (1)/(2 √(25-x^2))}(-2x)](https://img.qammunity.org/2021/formulas/mathematics/college/8uu5rpre7qt57qxm6zkfvxyw2dr39nb6xp.png)
![(dt)/(dx)= (-x)/( √(25-x^2))}](https://img.qammunity.org/2021/formulas/mathematics/college/ld0vaifpnif03hbnm0vqpfrexgnko2f5z1.png)
![{dt}= (-xdx)/( √(25-x^2))}](https://img.qammunity.org/2021/formulas/mathematics/college/n8ks9kfiib7ncp153wulc0go2e9hxj1hws.png)
replacing the value of
for dt in
![D(x) = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/oputakjgackzq2l9c1nz7vt7puw19t8etx.png)
So; we can say :
![D(x) = \int\limits{(-1200 x)/(√(25-x^2)) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/oputakjgackzq2l9c1nz7vt7puw19t8etx.png)
![D(x) = 1200\int\limits{(- x)/(√(25-x^2)) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/uzyodxfbccxl130b8yvagrp35gxdg0fo89.png)
![D(x) = 1200\int\limits \ dt](https://img.qammunity.org/2021/formulas/mathematics/college/huu8ccqin3w5qqy1gleoy6g5q0gebsmk6c.png)
![D(x) = 1200t+ C](https://img.qammunity.org/2021/formulas/mathematics/college/bzb9gynkt44sxhyiqug4aevp1quh2503i9.png)
Let's Recall that :
t =
![√(25-x^2)}](https://img.qammunity.org/2021/formulas/mathematics/college/t5p184j6l1lg4nlmcq51co3yvsf5e9gpmz.png)
Now;
![\mathbf{D(x) = 1200(√(25-x^2)})+ C}](https://img.qammunity.org/2021/formulas/mathematics/college/mnaqyqe6oc7j0g91q1cb5nplwxltsgr8qx.png)
GIven that:
D = 16,000 when x = $4 per unit.
i.e
D(4) = 16000
SO;
![D(x) = 1200(√(25-x^2)})+ C](https://img.qammunity.org/2021/formulas/mathematics/college/w22br17zu6pw0btifn42vtc2yc9th2ikpk.png)
![D(4) = 1200(√(25-4^2)})+ C](https://img.qammunity.org/2021/formulas/mathematics/college/ropoaicd3ly8c15rf9beu5372faul0ppu0.png)
![D(4) = 1200(√(25-16)})+ C](https://img.qammunity.org/2021/formulas/mathematics/college/cvedxpvr02wpda16b4jyruto6uz84svvo2.png)
![D(4) = 1200(√(9)})+ C](https://img.qammunity.org/2021/formulas/mathematics/college/r8i9chpdce6tu36kahkeswhjzb98oqpgiq.png)
![D(4) = 1200(3}})+ C](https://img.qammunity.org/2021/formulas/mathematics/college/qj6s44xmqzzlz7urqgob8m87sc3hc3gvzn.png)
16000 = 1200 (3) + C
16000 = 3600 + C
16000 - 3600 = C
C = 12400
replacing the value of C = 12400 into
, we have:
![\mathbf{D(x) = 1200(√(25-x^2))+ 124000}](https://img.qammunity.org/2021/formulas/mathematics/college/y3x6sk8xb0vd8tejc6yvjtzeimggpl9y21.png)
∴ The demand function is
![\mathbf{D(x) = 1200(√(25-x^2))+ 124000}](https://img.qammunity.org/2021/formulas/mathematics/college/y3x6sk8xb0vd8tejc6yvjtzeimggpl9y21.png)