187k views
2 votes
URGENT HELP PLEASE!

Solve the following equations on the interval 0<=x<=2pi

a) square root2 sin 2x=1
b) csc^2x-cscx-2=0

1 Answer

6 votes

Answer:

(a)
x=(\pi)/(8),(3\pi)/(8),(9\pi)/(8),(11\pi)/(8)

(b)
x=(3\pi)/(2),(\pi)/(6),(5\pi)/(6)

Explanation:

It is given that
0\leq x\leq 2\pi.

(a)


√(2)\sin 2x=1


\sin 2x=(1)/(√(2))


\sin 2x=(\pi)/(4)


2x=(\pi)/(4),(3\pi)/(4),(9\pi)/(4),(11\pi)/(4)
[\because \sin x=\sin y\Rightarrow x=n\pi+(-1)^ny]


x=(\pi)/(8),(3\pi)/(8),(9\pi)/(8),(11\pi)/(8)

(b)


\csc^2 x-\csc x-2=0


\csc^2 x-2\csc x+\csc x-2=0


\csc x(\csc x-2)+1(\csc x-2)=0


(\csc x+1)(\csc x-2)=0


\csc x=-1\text{ or }\csc x=2


\sin x=-1\text{ or }\sin x=(1)/(2)
[\because \sin x=(1)/(\csc x)]


x=(3\pi)/(2)\text{ or }x=(\pi)/(6),(5\pi)/(6)

Therefore,
x=(3\pi)/(2),(\pi)/(6),(5\pi)/(6).

User Mane Manero
by
5.5k points