Answer:
Option (4)
Explanation:
Surface area of a prism = 2B + P×h
where B = Area of the triangular base
P = perimeter of the triangular base
h = height of the prism
B =
![(1)/(2)(\text{leg 1})(\text{leg 2})](https://img.qammunity.org/2021/formulas/mathematics/college/g61hivfd22tobvx0zpezteofcvr2mqp5fr.png)
Since, (Hypotenuse)² + (Leg 1)² + (Leg 2)² [Pythagoras theorem]
(20)² = (12)² + (Leg 2)²
Leg 2 =
![√(400-144)](https://img.qammunity.org/2021/formulas/mathematics/college/or0s8vmqeqposm4jsnvo5pshbbeihka80n.png)
= 16 units
Therefore, B =
![(1)/(2)* 12* 16](https://img.qammunity.org/2021/formulas/mathematics/college/cxkhrquivl1u8ln50acjbloklhrtwq3yw6.png)
= 96 units²
P = 12 + 16 + 20
P = 48 units
h = 7.5 units
Surface area of the prism = 2(96) + (48×7.5)
= 192 + 360
= 552 units²
Therefore, surface area of the given triangular prism = 552 units²
Option (4) will be the answer.