61.7k views
0 votes
Find all solutions of the equation in the interval , 02π. =4cosx+−sin2x4 Write your answer in radians in terms of π. If there is more than one solution, separate them with commas.

User Navie
by
4.5k points

1 Answer

5 votes

Answer:

The answer is "2nπ".

Explanation:

Given:


4 \cos x= -\sin^2x+4.......(1)

We know:


\Rightarrow \sin^2 x+\cos^2 x=1\\\\\Rightarrow \sin^2 x= 1 -\cos^2 x\\

put the value of
\sin^2 x value in the above equation:


\Rightarrow 4 \cos x= - (1-\cos^2 x)+4\\\\\Rightarrow 4 \cos x= - 1+\cos^2 x+4\\\\\Rightarrow 4 \cos x= \cos^2 x+3\\\\\Rightarrow \cos^2 x-4 \cos x+3=0\\\\

Let
\cos x= A


\Rightarrow A^2-4A+3=0 \\ \Rightarrow A^2-(3A+A)+3=0 \\\Rightarrow A^2-3A-A+3=0\\\Rightarrow A(A-3)-1(A-3)=0\\\Rightarrow (A-3)(A-1)=0 \\


\Rightarrow A- 3=0 \ \ \ \ \ \ \ \ \ \ \ \Rightarrow A -1 =0 \\\\


\Rightarrow A= 3\ \ \ \ \ \ \ \ \ \ \ \Rightarrow A =1 \\\\\Rightarrow \cos x = 3\ \ \ \ \ \ \ \Rightarrow \cos x =1\\\\\Rightarrow x = \cos^(-1) 3\ \ \ \ \ \ \ \Rightarrow \cos x =\cos 0\\\\\Rightarrow x = \cos^(-1) 3\ \ \ \ \ \ \ \Rightarrow x = 0\\\\

The value of x is
2n\pi\ \ \ _(where) \ \ \ \ \ \ \ n=1, 2, 3......


\boxed{\bold{x=2 n \pi}}

User Panicum
by
5.0k points