194k views
5 votes
Differentiate with respect to X

\sqrt{ (cos2x)/(1 +sin2x ) }


User Crimi
by
5.7k points

1 Answer

1 vote

Power and chain rule (where the power rule kicks in because
\sqrt x=x^(1/2)):


\left(\sqrt{(\cos(2x))/(1+\sin(2x))}\right)'=\frac1{2\sqrt{(\cos(2x))/(1+\sin(2x))}}\left((\cos(2x))/(1+\sin(2x))\right)'

Simplify the leading term as


\frac1{2\sqrt{(\cos(2x))/(1+\sin(2x))}}=(√(1+\sin(2x)))/(2√(\cos(2x)))

Quotient rule:


\left((\cos(2x))/(1+\sin(2x))\right)'=((1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))')/((1+\sin(2x))^2)

Chain rule:


(\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)


(1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)

Put everything together and simplify:


(√(1+\sin(2x)))/(2√(\cos(2x)))((1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x)))/((1+\sin(2x))^2)


=(√(1+\sin(2x)))/(2√(\cos(2x)))(-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x))/((1+\sin(2x))^2)


=(√(1+\sin(2x)))/(2√(\cos(2x)))(-2\sin(2x)-2)/((1+\sin(2x))^2)


=-(√(1+\sin(2x)))/(√(\cos(2x)))(\sin(2x)+1)/((1+\sin(2x))^2)


=-(√(1+\sin(2x)))/(√(\cos(2x)))\frac1{1+\sin(2x)}


=-\frac1{√(\cos(2x))}\frac1{√(1+\sin(2x))}


=\boxed{-\frac1{√(\cos(2x)(1+\sin(2x)))}}

User Yves Gonzaga
by
6.3k points