56.2k views
1 vote
Q.04: (11 points) Given the polar curve r = e θ , where 0 ≤ θ ≤ 2π. Find points on the curve in the form (r, θ) where there is a horizontal or vertical tangent line. g

1 Answer

5 votes

I suppose the curve is
r(\theta)=e^\theta.

Tangent lines to the curve have slope
(dy)/(dx); use the chain rule to get this in polar coordinates.


(dy)/(dx)=(dy)/(d\theta)(d\theta)/(dx)=((dy)/(d\theta))/((dx)/(d\theta))

We have


y(\theta)=r(\theta)\sin\theta\implies(dy)/(d\theta)=(dr)/(d\theta)\sin\theta+r(\theta)\cos\theta


x(\theta)=r(\theta)\cos\theta\implies(dx)/(d\theta)=(dr)/(d\theta)\cos\theta-r(\theta)\sin\theta


r(\theta)=e^\theta\implies(dr)/(d\theta)=e^\theta


\implies(dy)/(dx)=(e^\theta\sin\theta+e^\theta\cos\theta)/(e^\theta\cos\theta-e^\theta\sin\theta)=(\sin\theta+\cos\theta)/(\cos\theta-\sin\theta)

The tangent line is horizontal when the slope is 0, which happens wherever the numerator vanishes:


\sin\theta+\cos\theta=0\implies\sin\theta=-\cos\theta\implies\tan\theta=-1


\implies\theta=\boxed{-\frac\pi4+n\pi}

(where
n is any integer)

The tangent line is vertical when the slope is infinite or undefined, which happens when the denominator is 0:


\cos\theta-\sin\theta=0\implies\sin\theta=\cos\theta\implies\tan\theta=1


\implies\theta=\boxed{\frac\pi4+n\pi}

User Sean Redmond
by
4.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.