Answer:
C(x) = 0.2x^5 - x^2 + 6000
Explanation:
Given in the question are restated as follows:
Marginal cos = C'(x) = x^4 - 2x ...................... (1)
Note that marginal cost (C'(x)) refers to the change in the total cost (C(x)) as a result of one more unit increase in the quantity produced. That is, MC refers to the additional cost incurred in order to produce one more unit of a good.
Therefore, TC can be obtained by integrating equation (1) as follows:
C(x) = ∫C'(x) = ∫[x^4 - 2x]dx
C(x) = 1/5x^5 - 2/2x^2 + F ................................ (2)
Where F is the fixed cost. Since the fixed cost is given as $6,000 in the question, we substitute it for F into equation (2) and solve as follows:
C(x) = 0.2x^5 - x^2 + 6000 ......................... (3)
Equation (3) is the total cost function C.