Answer:
0.0626 m^3
Step-by-step explanation:
First, we know that the equation to calculate the behavior of gases is:
PV=nRT
Looking at the problem, we understand that we are needing to solve for V, which means we need to isolate V to solve for it.
The new equation will look something like this:
V=nRT/P
The last step is to simply plug in the remaining variables:
n=3.27
R=8.31 (that is not given but is a standard number that you will always use for "R"/ the ideal gas constant-it helps to right it down somewhere to reference it if you ever need it!)
P=125000
T=288 (the temp needs to be in degrees K, so take 15.0 degrees c and + 273)
Finally, when you input all of those, you will have something that looks like this:
V=(3.27*8.31*288)/125000
V=0.02608205 m^3
V= 0.0626 m^3 (rounded to 3 sig. figs)
I hope this was helpful and easy to understand!