Answer:
A = 27(2√3-π) cm² ≈ 8.71 cm²
Explanation:
Area of shaded region it is area of hexagon minus area of circle.
A regular hexagon is comprised of six equilateral triangles (of the same sides).
So its area:
{S = side of the triangle}
Height (H) of such a triangle is equal to radius (R) of a circle inscribed in the hexagon:
![R = H = (S\sqrt3)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n0ad1wok4krkphrktlggswcaok91dokc23.png)
Area of shaded region:
![A=A_1-A_\circ=\frac{3S^2\sqrt3}2-\pi R^2=\frac{6S^2\sqrt3}4-\pi\left(\frac{S\sqrt3}2\right)^2=\frac{S^2(6\sqrt3-3\pi)}4](https://img.qammunity.org/2021/formulas/mathematics/high-school/dyk32wworypkukx15eknqp8lqwcepcssh4.png)
S = 6 cm
so:
![A=\frac{6^2(6\sqrt3-3\pi)}4=\frac{36(6\sqrt3-3\pi)}4=9(6\sqrt3-3\pi)=27(2\sqrt3-\pi)\ cm^2\\\\A=27(2\sqrt3-\pi)\ cm^2\approx8.71\ cm^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ayr8z5cb63dmlsnkuihwd6c0ihbfhgd1d.png)