181k views
0 votes
Compute the following values when the log is defined by its principal value on the open set U equal to the plane with the positive real axis deleted.

a. log i
b. log(-1)
c. log(-1 + i)
d. i^i
e. (-i)^i

1 Answer

3 votes

Answer:

Following are the answer to this question:

Explanation:

The principle vale of Arg(3)


Arg(3)=-\pi+\tan^(-1) ((|Y|)/(|x|))

The principle value of the
\logi= \log(0+i)\ \ \ \ \ _(where) \ \ \ x=0 \ \ y=1> 0

So, the principle value:

a)


\to \log(i)=\log |i|+i Arg(i)\\\\


=\log √(0+1)+i \tan^(-1)((1)/(0))\\\=\log 1 +i \tan^(-1)(\infty)\\\=0+i(\pi)/(2)\\\=i(\pi)/(2)

b)


\to \log(-i)= \log(0-i ) \ \ \ x=0 \ \ \ y= -1<0\\

Principle value:


\to \log(-i)= \log|-i|+iArg(-i) \\\\


=\log √(0+1)+i(-\pi+\tan^(-1)(\infty))\\\\=\log1 + i(-\pi+(\pi)/(2))\\\\=-i(\pi)/(2)

c)


\to \log(-1+i) \ \ \ \ x=-1, _(and) y=1 \ \ \ x<0 and y>0

The principle value:


\to \log(-1+i)=\log |-1+i| + i Arg(-1+i)


=\log √(1+1)+i(\pi+\tan^(-1)((1)/(1)))\\\\=\log √(2) + i(\pi-\tan^(-1)(\pi)/(4))\\\\=\log √(2) + i\tan^(-1)(3\pi)/(4)\\\\

d)


\to i^i=w\\\\w=e^(i\log i)

The principle value:


\to \log i=i(\pi)/(2)\\\\\to w=e^{i(i (\pi)/(2))}\\\\=e^{-(\pi)/(2)}

e)


\to (-i)^i\\\to w=(-i)^i\\\\w=e^(i \log (-i))

In this we calculate the principle value from b:

so, the final value is
e^{(\pi)/(2)}

f)


\to -1^i\\\\\to w=e^(i log(-1))\\\\\ principle \ value: \\\\\to \log(-1)= \log |-1|+iArg(-i)


=\log √(1) + i(\pi-\tan^(-1)(0)/(-1))\\\\=\log √(1) + i(\pi-0)\\\\=\log √(1) + i\pi\\\\=0+i\pi\\=i\pi

and the principle value of w is =
e^(\pi)

g)


\to -1^(-i)\\\\\to w=e^(-i \log (-1))\\\\

from the point f the principle value is:


\to \log(-1)= i\pi\\\to w= e^(-i(i\pi))\\\\\to w=e^(\pi)

h)


\to \log(-1-i)\\\\\ Here x=-1 ,<0 \ \ y=-1<0\\\\ \ principle \ value \ is:\\\\ \to \log(-1-i)=\log√(1+1)+i(-\pi+\tan^(-1)(1))


=\log√(2)+i(-\pi+(\pi)/(4))\\\\=\log√(2)+i(-(3\pi)/(4))\\\\=\log√(2)-i(3\pi)/(4))\\

User Gecko
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories