Answer:
a)
b)
![h = 15687.9 m](https://img.qammunity.org/2021/formulas/physics/college/5h9yaju0cv2qe0khnqsd88zj9j5kdq38ek.png)
c)
The estimate is low.
Step-by-step explanation:
a) Using the energy conservation we have:
![E_(initial)=E_(final)](https://img.qammunity.org/2021/formulas/physics/high-school/i3basq1xqlrx0wykh5t2py68pyv2z7td2z.png)
we have kinetic energy intially and gravitational potential energy at the maximum height.
![(1)/(2)mv^(2)=mgh_(max)](https://img.qammunity.org/2021/formulas/physics/college/2hinnmha28ndly260y2q5udgjwssyx2os4.png)
![h_(max)=(v^(2))/(2g)](https://img.qammunity.org/2021/formulas/physics/college/ob43e6sayo3o1xlif95bw9ozre27jj9te3.png)
b) We can use the equation of the gravitational force
(1)
We have that:
(2)
at the surface G will be:
![G=(gR^(2))/(M)](https://img.qammunity.org/2021/formulas/physics/college/zbxpyykh4ictfj8lqzelnecrdyd4na7ekm.png)
Now the equation of an object at a distance x from the surface.
is:
![F=(mgR^(2))/((R+x)^(2))](https://img.qammunity.org/2021/formulas/physics/college/l85y5vptll51wted78rqk0n38afy771th7.png)
![m(dv)/(dt)=(mgR^(2))/((R+x)^(2))](https://img.qammunity.org/2021/formulas/physics/college/44ira1ybb402bqe8wki9c92ktzgld9zacs.png)
Using that dv/dt is vdx/dt and integrating in both sides we have:
![v_(0)=\sqrt{(2gRh)/(R+h)}](https://img.qammunity.org/2021/formulas/physics/college/lubikxirz5qi7n6d1lstewo4hgkxfewxup.png)
![h=(v_(0)^(2)R)/(2gR-v_(0)^(2))](https://img.qammunity.org/2021/formulas/physics/college/k4tyg1ucuwhp62m4vd6y41tyisyhmz9ugo.png)
![h=15687.9](https://img.qammunity.org/2021/formulas/physics/college/hm4tpbqw5ndzdhvugzci4p1fho1wemojps.png)
c) The difference is:
So the percent difference will be:
![PD=|(14536.16-15687.9)/((14536.16+15687.9)/2)*100%](https://img.qammunity.org/2021/formulas/physics/college/h9i4haoyw8wak0uxxc3ox7u0a4ici7vx29.png)
![PD=7.62\%](https://img.qammunity.org/2021/formulas/physics/college/55nlw30d8qvrdvqzcmkawzwio6f71umfnu.png)
The estimate is low.
I hope it helps you!