Answer:
Error in the sphere's surface: 29
and relative error in surface measure: 0.011
Error in the sphere's volume: 205
and relative error in the volume measure: 0.017
Explanation:
(a)
The measured length (l) of the circumference is 90 cm with an error of 0.5 cm, that is:
![l=2\,\pi\,R=90\,cm\\R=(90)/(2\,\pi) \,cm=(45)/(\pi) \,cm=14.3239\,\,cm](https://img.qammunity.org/2021/formulas/mathematics/college/lcnb08ca3gfowz8gu41v8a290whuuegylq.png)
and with regards to the error:
![dl=0.5 \, cm\\dl=2\,\pi\,dR\\dR=(dl)/(2\,\pi) =(1)/(4\,\pi) cm = 0.0796\,cm](https://img.qammunity.org/2021/formulas/mathematics/college/n8m1qe3bjolc6uur38djskq60gr4exqbp2.png)
then when we use the formula for the sphere's surface, we get:
![S=4\,\pi\,R^2\\dS=4\,\pi\,2\,R\,(dR)\\dS=8\,\,\pi\.((45)/(\pi) \,\,cm)\,((1)/(4\pi)\,cm) =(90)/(\pi) \,\,cm^2\approx \,29\,cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/lcx7ai73awzhn6tjyewxnxf8ry1okf4rq1.png)
Then the relative error in the surface is:
![(dS)/(S) =(90/\pi)/(4\,\pi\,R^2) =(1)/(90) =0.011](https://img.qammunity.org/2021/formulas/mathematics/college/63rfczj5pz3ra74rlxyhb0w72on4ze9f8d.png)
(b)
Use the formula for the volume of the sphere:
![V=(4\,\pi)/(3) R^3\\dV=(4\,\pi)/(3)\,3\,R^2\,(dR)=4\,\pi\,R^2\,((1)/(4\pi)) \,cm=((45)/(\pi))^2 \,\,cm^3\approx 205\,\,cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/wsa88gg0up9gk1r44emj0zgvg5b9yigapi.png)
Then the relative error in the volume is:
![(dV)/(V) =(205)/(12310.5) \approx 0.017](https://img.qammunity.org/2021/formulas/mathematics/college/m7acfqp1bxv2qu1iei0l9lf5vjkntygtcy.png)