Answer:
The p-value is
![p-value = 0.013167](https://img.qammunity.org/2021/formulas/mathematics/college/yw2grj7ol914zgdzc6ey9sy4siemxyg2qv.png)
Explanation:
From the question we are told that
The population mean is
= 200 milligrams
The sample size is
![n = 70](https://img.qammunity.org/2021/formulas/mathematics/college/sqo6a0lopb8l1yo9pybyi0venwe8ddhndx.png)
The sample mean is
![\= x = 205.7](https://img.qammunity.org/2021/formulas/mathematics/college/hai7njigj2l6xw1s5a2dfrnn1robq6oend.png)
The sample standard deviation is
![\sigma = 21 \ milligram](https://img.qammunity.org/2021/formulas/mathematics/college/kvvsy1bugmghi4x4m5tb2ht2y9u747b5cf.png)
Generally the Null hypothesis is mathematically represented as
The Alternative hypothesis is
![H_a : \mu < 200](https://img.qammunity.org/2021/formulas/mathematics/college/rd0pq3cl3ez7aelpa83kautmjf09vpyf2b.png)
The test statistics is mathematically represented as
![t_s = (\= x - \mu )/((\sigma)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/q99aze8cpg2xr74mr2azpu7peum397e1wy.png)
substituting values
![t_s = ( 205.7 - 200 )/((21)/(√(70) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/m7ywqqe5uxt5nkhlp3vlamul1l59r9k8sf.png)
![t_s = 2.270](https://img.qammunity.org/2021/formulas/mathematics/college/xru3956sd6u12jswb0vkg2nfdrlnxqvgso.png)
Now the p-value is mathematically represented as
![p-value = P(Z \le t_s )](https://img.qammunity.org/2021/formulas/mathematics/college/u5855zud7uld8x9d3czgxxgdwurehbkc66.png)
substituting values
![p-value = P(Z \le 2.270 )](https://img.qammunity.org/2021/formulas/mathematics/college/div68frtvyub4ay37x2ih9a08ffojg5roj.png)
Using the Excel function[=NORMDIST(2.270)] to calculate the p-value we obtain that
![p-value = 0.013167](https://img.qammunity.org/2021/formulas/mathematics/college/yw2grj7ol914zgdzc6ey9sy4siemxyg2qv.png)