Answer:
![x=\pm √(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/b40qa1cacsiu2pu0xg6faocxsno5qm3ujr.png)
Explanation:
Consider the given polynomial is
![P(x)=x^2-3](https://img.qammunity.org/2021/formulas/mathematics/high-school/3clabt7w2ti4f0e2w3xb7a8h5naeplfp00.png)
We need to find the zeros of the given polynomial.
Now,
![P(x)=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ozvgros38b2yhhr56biev3fgd3vjpnn765.png)
![x^2-3=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/rmu3vg182qosv4bwc6p531kx1p10ure5wn.png)
Add 3 on both sides.
![x^2=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/9r95op1k4mcgk5qd6fqke5hwkw5ixb5c0v.png)
Taking square root on both sides.
![x=\pm √(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/b40qa1cacsiu2pu0xg6faocxsno5qm3ujr.png)
Therefore, zeros of the polynomial P(x) are
.
To verify the relationship, put
in P(x).
![P(√(3))=(√(3))^2-3=3-3=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/6m3seeh4vq9drmmanl7e5lb7v8znrrupk4.png)
Put
in P(x).
![P(-√(3))=(-√(3))^2-3=3-3=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/mprckazxhljer99hwy0oz064yv45484whv.png)
Since P(x)=0 for both values, therefore relationship verified.