179k views
5 votes
Estimate the local maximum of...

Estimate the local maximum of...-example-1

1 Answer

2 votes

Answer:

Option A.

Explanation:

The given equation is


y=-x^3-5x^2-3x+9 ...(1)

We need to find the local maximum.

Differentiate the given equation w.r.t. x.


y=-(3x^(3-1))-5(2x^(2-1))-3(1)+0


y'=-3x^2-10x-3 ...(2)

Now, equate y'=0 to find the extrem points.


-3x^2-10x-3=0


-3x^2-9x-x-3=0


-3x(x+3)-1(x+3)=0


-(3x+1)(x+3)


3x+1=0\Rightarrow x=-(1)/(3)


x+3=0\Rightarrow x=-3

Differentiate (2) w.r.t. x.


y''=-6x-10

For
x=-(1)/(3),


y''=-6(-(1)/(3))-10=2-10=-8<0 maximum

For
x=-3,


y''=-6(-3)-10=18-10=8>0 minimum

So, the given equation has local maximum at x=-1/3 and the maximum value is


y=-(-(1)/(3))^3-5(-(1)/(3))^2-3(-(1)/(3))+9\approx 9.48

The local maximum at (-0.33,9.48).

Hence, the correct option is A.

User Nickpick
by
4.2k points