Answer:
15.87%
Explanation:
We have to calculate the value of z:
z = (x - m) / (sd / n ^ (1/2))
where x is the value to evaluate, m is the mean, n is the sample size and sd is the standard deviation, we replace:
p (x <60,527) = z = (x - m) / (sd / n ^ (1/2))
p (x <60,527) = z = (60,527 - 60) / (5/90 ^ (1/2))
z = 1
if we look in the attached table, for z = 1 it is 0.8413
p (x> 60,527) = 1 - 0.8413
p (x> 60,527) = 0.1587
Therefore the probability is 15.87%