Answer:
161.6 cm²
Explanation:
Surface Area of the rectangular box = 2(LW+LH+WH)
L is the length of the box
W is the width of the box
H is the height of the box
let dL, dW and dH be the possible error in the dimensions L, W and H respectively.
Since there is a possible error of 0.2cm in each dimension, then dL = dW = dH = 0.2cm
The surface Area of the rectangular box using the differentials is expressed as shown;
S = 2{(LdW+WdL)+(LdH+HdL)+(WdH+HdW)]
Also given L = 96cm W = 58cm and H = 48cm, on substituting this given values and the differential error, we will have;
S = 2{(96*0.2+58*0.2) + (96*0.2+48*0.2)+(58*0.2+48*0.2)}
S = 2{19.2+11.6+19.2+9.6+11.6+9.6}
S = 2(80.8)
S = 161.6 cm²
Hence, the surface area of the box is 161.6 cm²