Answer:
The Coulomb Barrier U is 25.91 MeV
Step-by-step explanation:
Given that:
Atomic Mass of lead nucleus A = 208
atomic mass of an alpha particle A = 4
Radius of an alpha particle
where;
![R_\alpha = 1.2 * 10 ^(-15) \ m](https://img.qammunity.org/2021/formulas/chemistry/college/tjpuhjrip9ysbtztqvf5sjknhdn9zled6a.png)
![R_\alpha = 1.2 * 10 ^(-15) \ m * (4) ^{^{(1)/(3)}](https://img.qammunity.org/2021/formulas/chemistry/college/duzna7etdribrd2cuzalox1fq4fmli8o7j.png)
![R_\alpha = 1.905 * 10^(-15) \ m](https://img.qammunity.org/2021/formulas/chemistry/college/qvgqllpg8cz7ta94y3zbzk2wkf0hwsc1ir.png)
Radius of the Gold nucleus
![R_(Au)= R_o A^{^{(1)/(3)}](https://img.qammunity.org/2021/formulas/chemistry/college/f5e1qc4wmp6zmdnvt7wh4cwf94ka41y6a2.png)
![R_(Au)= 1.2 * 10 ^(-15) \ m * (208) ^{^{(1)/(3)}](https://img.qammunity.org/2021/formulas/chemistry/college/asy5arjz63z06mcrpjugf3blk9q3mzuqbi.png)
![R_(Au) = 7.11 * 10^(-15) \ m](https://img.qammunity.org/2021/formulas/chemistry/college/9n6fx3wjbu85fs24ohicib04ehtfiz5pz5.png)
![R = R_\alpha + R_(Au)](https://img.qammunity.org/2021/formulas/chemistry/college/yyb6nykogrqdatf0ew725pxfdefbplfwhw.png)
![R = 1.905 * 10^(-15) \ m + 7.11 * 10^(-15) \ m](https://img.qammunity.org/2021/formulas/chemistry/college/2b9x5bx9qecvkxa73qk35qsbooo32c9wfh.png)
![R = 9.105 * 10 ^(-15) \ m](https://img.qammunity.org/2021/formulas/chemistry/college/t3rcpq0shib8b84k32gqjf6iq9q6d7ianh.png)
The electric potential energy of the Coulomb barrier
![U = (Ke \ q_(\alpha) q_(Au))/(R)](https://img.qammunity.org/2021/formulas/chemistry/college/xpj073427t6n9qn1ttiubnuey9k0o3ydbq.png)
![U = \frac{8.99 * 10^9 \ N.m \ ^2/C ^2 \ * 2 ( 82) * \(1.60 * 10^(-19) C \ \ e } {9.105 * 10^(-15) \ m }](https://img.qammunity.org/2021/formulas/chemistry/college/2k5uac8evcr5id1sohj3qfuhvwmqdui9y8.png)
U = 25908577.7eV
U = 25.908577 × 10⁶ eV
U = 25.91 MeV
The Coulomb Barrier U is 25.91 MeV