206k views
1 vote
Complete the identity.
1) sec^4 x + sec^2 x tan^2 x - 2 tan^4 x = ?

1 Answer

4 votes

Answer:

See Explanation

Explanation:

Question like this are better answered if there are list of options; However, I'll simplify as far as the expression can be simplified

Given


sec^4 x + sec^2 x tan^2 x - 2 tan^4 x

Required

Simplify


(sec^2 x)^2 + sec^2 x tan^2 x - 2 (tan^2 x)^2

Represent
sec^2x with a

Represent
tan^2x with b

The expression becomes


a^2 + ab- 2 b^2

Factorize


a^2 + 2ab -ab- 2 b^2


a(a + 2b) -b(a+ 2 b)


(a -b) (a+ 2 b)

Recall that


a = sec^2x


b = tan^2x

The expression
(a -b) (a+ 2 b) becomes


(sec^2x -tan^2x) (sec^2x+ 2 tan^2x)

..............................................................................................................................

In trigonometry


sec^2x =1 +tan^2x

Subtract
tan^2x from both sides


sec^2x - tan^2x =1 +tan^2x - tan^2x


sec^2x - tan^2x =1

..............................................................................................................................

Substitute 1 for
sec^2x - tan^2x in
(sec^2x -tan^2x) (sec^2x+ 2 tan^2x)


(1) (sec^2x+ 2 tan^2x)

Open Bracket


sec^2x+ 2 tan^2x ------------------This is an equivalence


(secx)^2+ 2 (tanx)^2

Solving further;

................................................................................................................................

In trigonometry


secx = (1)/(cosx)


tanx = (sinx)/(cosx)

Substitute the expressions for secx and tanx

................................................................................................................................


(secx)^2+ 2 (tanx)^2 becomes


((1)/(cosx))^2+ 2 ((sinx)/(cosx))^2

Open bracket


(1)/(cos^2x)+ 2 ((sin^2x)/(cos^2x))


(1)/(cos^2x)+ (2sin^2x)/(cos^2x)

Add Fraction


(1 + 2sin^2x)/(cos^2x) ------------------------ This is another equivalence

................................................................................................................................

In trigonometry


sin^2x + cos^2x= 1

Make
sin^2x the subject of formula


sin^2x= 1 - cos^2x

................................................................................................................................

Substitute the expressions for
1 - cos^2x for
sin^2x


(1 + 2(1 - cos^2x))/(cos^2x)

Open bracket


(1 + 2 - 2cos^2x)/(cos^2x)


(3 - 2cos^2x)/(cos^2x) ---------------------- This is another equivalence

User Ushox
by
8.1k points