206k views
1 vote
Complete the identity.
1) sec^4 x + sec^2 x tan^2 x - 2 tan^4 x = ?

1 Answer

4 votes

Answer:

See Explanation

Explanation:

Question like this are better answered if there are list of options; However, I'll simplify as far as the expression can be simplified

Given


sec^4 x + sec^2 x tan^2 x - 2 tan^4 x

Required

Simplify


(sec^2 x)^2 + sec^2 x tan^2 x - 2 (tan^2 x)^2

Represent
sec^2x with a

Represent
tan^2x with b

The expression becomes


a^2 + ab- 2 b^2

Factorize


a^2 + 2ab -ab- 2 b^2


a(a + 2b) -b(a+ 2 b)


(a -b) (a+ 2 b)

Recall that


a = sec^2x


b = tan^2x

The expression
(a -b) (a+ 2 b) becomes


(sec^2x -tan^2x) (sec^2x+ 2 tan^2x)

..............................................................................................................................

In trigonometry


sec^2x =1 +tan^2x

Subtract
tan^2x from both sides


sec^2x - tan^2x =1 +tan^2x - tan^2x


sec^2x - tan^2x =1

..............................................................................................................................

Substitute 1 for
sec^2x - tan^2x in
(sec^2x -tan^2x) (sec^2x+ 2 tan^2x)


(1) (sec^2x+ 2 tan^2x)

Open Bracket


sec^2x+ 2 tan^2x ------------------This is an equivalence


(secx)^2+ 2 (tanx)^2

Solving further;

................................................................................................................................

In trigonometry


secx = (1)/(cosx)


tanx = (sinx)/(cosx)

Substitute the expressions for secx and tanx

................................................................................................................................


(secx)^2+ 2 (tanx)^2 becomes


((1)/(cosx))^2+ 2 ((sinx)/(cosx))^2

Open bracket


(1)/(cos^2x)+ 2 ((sin^2x)/(cos^2x))


(1)/(cos^2x)+ (2sin^2x)/(cos^2x)

Add Fraction


(1 + 2sin^2x)/(cos^2x) ------------------------ This is another equivalence

................................................................................................................................

In trigonometry


sin^2x + cos^2x= 1

Make
sin^2x the subject of formula


sin^2x= 1 - cos^2x

................................................................................................................................

Substitute the expressions for
1 - cos^2x for
sin^2x


(1 + 2(1 - cos^2x))/(cos^2x)

Open bracket


(1 + 2 - 2cos^2x)/(cos^2x)


(3 - 2cos^2x)/(cos^2x) ---------------------- This is another equivalence

User Ushox
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories