179k views
5 votes
Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?

User Skullper
by
8.6k points

1 Answer

5 votes

Answer:

Sum of 2 digit = 48

Sum of 3 digit = 317

Sum of 4 digit = 3009

Total = 3374

Explanation:

Given:

9, 8 and 7

Required

Sum of Multiples

The first step is to list out the multiples of each number

9:- 9,18,....,99,108,117,................,999

,1008

,1017....

8:- 8,16........,96,104,...............,992,1000,1008....

7:- 7,14,........,98,105,.............,994,1001,1008.....

Calculating the sum of smallest 2 digit multiple of 9, 8 and 7

The smallest positive 2 digit multiple of:

- 9 is 18

- 8 is 16

- 7 is 14

Sum = 18 + 16 + 14

Sum = 48

Calculating the sum of smallest 3 digit multiple of 9, 8 and 7

The smallest positive 3 digit multiple of:

- 9 is 108

- 8 is 104

- 7 is 105

Sum = 108 + 104 + 105

Sum = 317

Calculating the sum of smallest 4 digit multiple of 9, 8 and 7

The smallest positive 4 digit multiple of:

- 9 is 1008

- 8 is 1000

- 7 is 1001

Sum = 1008 + 1000 + 1001

Sum = 3009

Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit

Sum of All = 48 + 317 + 3009

Sum of All = 3374

User GWed
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories