Answer:
![f(x)=4(x+6)^2-134](https://img.qammunity.org/2021/formulas/mathematics/college/re2w3nryyng4n2kdi5cg4a6y5l1he7dbch.png)
Explanation:
We are required to write the function
in vertex form.
First, bring the constant to the left-hand side.
![f(x) -10= 4x^2 + 48x](https://img.qammunity.org/2021/formulas/mathematics/college/y9v5zh6gao4d1927d18ze593i20zdruzjr.png)
Factorize the right hand side.
![f(x) -10= 4(x^2 + 12x)](https://img.qammunity.org/2021/formulas/mathematics/college/jv3xrg7tix4slhfwu63xn6o9ykoucch4vf.png)
Take note of the factored term(4) and write it in the form below.
![f(x) -10+4\Box= 4(x^2 + 12x+\Box)](https://img.qammunity.org/2021/formulas/mathematics/college/z5yjhjao8ymqq1z6bim996m7qj7szhsxgy.png)
![\Box = (\frac{\text{Coefficient of x}}{2} )^2\\\\\text{Coefficient of x}=12\\\\\Box = ((12)/(2) )^2 =6^2=36](https://img.qammunity.org/2021/formulas/mathematics/college/6i2f99cgm458rzz09sir31gu7z7v3ovwg3.png)
Substitute 36 for the boxes.
![f(x) -10+4\boxed{36}= 4(x^2 + 12x+\boxed{36})](https://img.qammunity.org/2021/formulas/mathematics/college/5ckwu4a6i26tl620aaczzscz43d6dvhskf.png)
![f(x) -10+144= 4(x^2 + 12x+6^2)](https://img.qammunity.org/2021/formulas/mathematics/college/sk6mbynyvubm0vt0wincm7ti5wqdg5h2ss.png)
![f(x) +134= 4(x+6)^2\\f(x)=4(x+6)^2-134](https://img.qammunity.org/2021/formulas/mathematics/college/ysjtb3lj5oltqhhszm5f0jkoid7glvns6f.png)
The function written in vertex form is
![f(x)=4(x+6)^2-134](https://img.qammunity.org/2021/formulas/mathematics/college/re2w3nryyng4n2kdi5cg4a6y5l1he7dbch.png)