Answer:
M.E = 0.083
the margin of error for the confidence interval for the population proportion with a 98% confidence level is 0.083
Explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
p+/-zā(p(1-p)/n)
p+/-M.E
Given that;
M.E = margin of error
Proportion p = 15/100 = 0.15
Number of samples n = 100
Confidence interval = 98%
z(at 98% confidence) = 2.33
Substituting the values we have;
0.15 +/- 2.33ā(0.15(1-0.15)/100)
0.15 +/- 2.33ā0.001275
0.15 +/- 2.33(0.035707142142)
0.15 +/- 0.083197641192
0.15 +/- 0.083
So;
p = 0.15
M.E = 0.083
the margin of error for the confidence interval for the population proportion with a 98% confidence level is 0.083