Answer: 46
Explanation:
Given that the coordinates of the quadrilateral-shaped property are G(–8, 3), A(4, 8), R(10, 0), and D(–2, –5).
You need to find length GA, GD, RA and RD by using the formula
L = sqrt[ ( X2 - X1)^2 + ( Y2 -Y1 )^2 ]
Length GA will be
L = sqrt [ ( 8-3 )^2 + ( 4+8 )^2 ]
L = sqrt ( 5^2 + 12^2 )
L = sqrt(25 + 144)
L = sqrt (169)
L = 13.
Length GD will be
L = sqrt [ ( -5-3 )^2 + ( -2+8 )^2 ]
L = sqrt ( -8^2 + 6^2 )
L = sqrt(64 + 36)
L = sqrt (100)
L = 10.
Length RA will be
L = sqrt [ ( 10-4 )^2 + ( 0-8 )^2 ]
L = sqrt ( 6^2 + 8^2 )
L = sqrt(36 + 64)
L = sqrt (100)
L = 10.
Length RD will be
L = sqrt [ ( 10+2 )^2 + ( 0+5 )^2 ]
L = sqrt ( 12^2 + 5^2 )
L = sqrt(144 + 25)
L = sqrt (169)
L = 13.
The perimeter P will be
Substitute all the parameters into the formula below
P = GA + GD + RA + RD
P = 13 + 10 + 10 + 13
P = 46