Answer:
192 cm^3/min
Explanation:
Differentiating the volume expression, we get ...
dV/dt = 2xh(dx/dt) +x^2(dh/dt)
We are given that ...
x = 4 cm, dx/dt = 2 cm/min, h = 15 cm, dh/dt = -3 cm/min
Putting these values into the formula for volume rate of change, we get ...
dV/dt = 2(4 cm)(15 cm)(2 cm/min) +(4 cm)^2(-3 cm/min)
= 240 cm^3/min -48 cm^3/min
dV/dt = 192 cm^3/min