49.1k views
4 votes
Find the exact value of cos(7\pi /12)

User Leisha
by
7.7k points

1 Answer

6 votes

7π/12 lies in the second quadrant, so we expect cos(7π/12) to be negative.

Recall that


\cos^2x=\frac{1+\cos(2x)}2

which tells us


\cos\left((7\pi)/(12)\right)=-\sqrt{\frac{1+\cos\left(\frac{7\pi}6\right)}2}

Now,


\cos\left(\frac{7\pi}6\right)=-\cos\left(\frac\pi6\right)=-\frac{\sqrt3}2

and so


\cos\left((7\pi)/(12)\right)=-\sqrt{\frac{1-\frac{\sqrt3}2}2}=\boxed{-\frac{√(2-\sqrt3)}2}

User Bacara
by
7.5k points

No related questions found